Diciembre

2.5. Interpretar y utilizar índices para explicar el comportamiento de diversas situaciones.
El índice de una base de datos es una estructura de datos que mejora la velocidad de las operaciones, permitiendo un rápido acceso a los registros de una tabla. Al aumentar drásticamente la velocidad de acceso, se suelen usar sobre aquellos campos sobre los cuales se hagan frecuentes búsquedas.

El índice tiene un funcionamiento similar al índice de un libro, guardando parejas de elementos: el elemento q buscar un elemento que esté indexado, sólo hay que buscar en el índice dicho elemento para, una vez encontrado, devolver el registro que se encuentre en la posición marcada por el índice.

El espacio en disco requerido para almacenar el índice es típicamente menor que el espacio de almacenamiento de la tabla (puesto que los índices generalmente contienen solamente los campos clave de acuerdo con los que la tabla será ordenada, de tablas que no cabrían en ella. En una base de datos relacional un índice es una copia de parte de una tabla.

 

 

2.4. Aplicar la semejanza de triángulos en el cálculo de de distancias o alturas inaccesibles.

 La semejanza es la composición de una materia (una rotación y una posible reflexión o simetría axial) con una homotecia.En la rotación se puede cambiar el tamaño y la orientación de una figura pero no se altera su forma.

Por lo tanto, dos triángulos son semejantes si tienen similar forma.
En el caso del triángulo, la forma sólo depende de sus ángulos (no así en el caso de unrectángulo, por ejemplo, donde uno de sus ángulos es recto pero cuya forma puede ser más o menos alargada, es decir que depende del cociente base / altura).
Se puede simplificar así la definición: dos triángulos son semejantes si sus ángulos son iguales dos a dos.
En la figura, los ángulos correspondientes son A = A', B = B' y C = C'. Para denotar que dos triángulos ABC y DEF son semejantes se escribe ABC ~ DEF, donde el orden indica la correspondencia entre los ángulos: A, B y C se corresponden con D, E y F, respectivamente.
Una similitud tiene la propiedad (que la caracteriza) de multiplicar todas la longitudes por un mismo factor. Por lo tanto las razones longitud imagen / longitud origen son todas iguales, lo que da una segunda caracterización de los triángulos semejantes: Dos triángulos son semejantes si las razones de los lados correspondientes son congruentes.