Enero


3.2. Utilizar ecuaciones cuadráticas para modelar situaciones y resolverlas usando la fórmula general

-Formula General
Consideremos la ecuación cuadrática general ax2 + bx + c = 0.
Se puede resolver al completar el cuadrado.
x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}
Analizando la raíz cuadrada, se llega a las siguientes conclusiones:
Si b2 es menor que − 4ac los resultados de X serán dos valores con parte real y parte imaginaria. Es decir, el resultado sera un numero complejo.
Si b2 es mayor que − 4ac obtendremos dos valores distintos de X reales.
Y si b2 es igual que − 4ac obtendremos dos valores de X reales e iguales.
Al término b2 − 4ac se le llama discriminante.

Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde  a, b, y c son números reales.
 
 
Ejemplo:
9x2 + 6x + 10         a = 9, b = 6, c = 10
3x2  - 9x                 a = 3, b = -9, c = 0
-6x 2 + 10              a = -6, b = 0, c = 10
 
 
Hay tres formas de hallar las raíces ( el o los valores de la variable) de las ecuaciones cuadráticas:
 
1. Factorización Simple
2. Completando el Cuadrado
3. Fórmula Cuadrática
 
 
Factorización Simple:
 La factorización simple consiste en convertir la ecuación cuadrática en un producto de binomios. Luego, se busca el valor de x de cada binomio.
 
 
 
 
 
 
 
Ejemplo: Realizar la factorización simple de la ecuación
 x2 + 2x – 8  = 0          a = 1    b = 2    c = - 8
 
(x       )   (x       ) = 0                 [x ·x = x2]
 
( x +   )   (x  -   ) = 0

 
 
(x + 4 ) (x – 2) = 0                                        4 y –2     4 + -2 = 2
                                                                    4 · -2 = -8
 
 
 
 
x + 4 = 0       x – 2 = 0
 
 
 
x + 4 = 0      x – 2 = 0
x = 0 – 4      x = 0 + 2
x = -4           x = 2                   Estas son las dos soluciones.
 
 
Completando el Cuadrado:
  En este método, la ecuación  tiene que estar en su forma ax2+bx+c; y siempre la constante de a tiene que ser igual a 1.
 Por ejemplo, para factorizar la ecuación 4x2 + 12x – 8 = 0, hay que despejar de la siguiente forma:
 
 

4x2 + 12x – 8  = 0
 4        4      4      4

 
x2 + 3x – 2 = 0   Ahora,  a= 1.
 
Ejemplo:
x2 + 2x – 8 = 0           [Ya está en su forma donde a = 1.]
x2 + 2x = 8                 [ Pasar a c al lado opuesto.]
x2 + 2x + ___ = 8 + ___   [Colocar los blancos]
 
 
 
x2  + 2x + 1    = 8 + 1
x2  + 2x + 1 = 9
(       )  (      )  = 9      Hay que factorizar.
                                 Nota: Siempre será un cuadrado perfecto.
 
 
 
( x + 1) (x + 1) = 9 (x + 1)2 = 9
(x + 1) = ± 

 
x + 1 =  ± 3
x = -1 ± 3       [Separar las dos soluciones.]
x = -1 + 3       x = -1 – 3
x = 2               x = -4
 
 
 
Fórmula Cuadrática:
 Este método es muy simple: hay que sustituir los valores de a, b y c de la ecuación cuadrática a la siguiente fórmula:
 
 








Ejemplo:
X2 + 2x – 8 = 0      a = 1, b = 2, c = -8
 
 
 
 
 
 
x = -2 ± 6
          2
X =  -2 + 6     x = -2 - 6
           2                  2
 
   x = 4          x = -8
        2                  2
x = 2      x = - 4





3.3. Determinar el teorema de Tales mediante construcciones con segmentos.

Teorema de Thales

Si dos rectas cualesquieras se cortan por varias rectas paralelas, los segmentos determinados en una de las rectas son proporcionales a los segmentos correspondientes en la otra.

razones